
Reconfigurable Hybrid Interconnection for

Static and Dynamic Scientific Applications

Shoaib Kamil, Ali Pinar, Daniel Gunter,
Michael Lijewski, Leonid Oliker, John Shalf

CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

As we enter the era of petascale computing, system architects must plan for machines composed
of tens or even hundreds of thousands of processors. Although fully connected networks such as fat-
tree configurations currently dominate HPC interconnect designs, such approaches are inadequate
for such ultra-scale concurriencies due to the superlinear growth of component costs. Traditional
low-degree interconnect topologies, such as 3D tori, have reemerged as a competitive solution due
to the linear scaling of system components relative to the node count; however, such networks
are poorly suited for the requirements of many scientific applications at extreme concurrencies.
To address these limitations, we propose HFAST, a hybrid switch architecture that uses circuit
switches to dynamically reconfigure lower-degree interconnects to suit the topological requirements
of a given scientific application. This work presents several new research contributions. We develop
an optimization strategy for HFAST mappings and demonstrate that efficiency gains can be attained
across a broad range of static numerical computations. Additionally, we conduct an extensive
analysis of the communication characteristics of a dynamically adapting mesh calculation and show
that the HFAST approach can achieve significant performance advantages, even when compared
with traditional fat-tree configurations. Overall results point to the promising potential of utilizing
hybrid reconfigurable networks to interconnect future petascale architectures, for both static and
dynamically adapting applications.

1 Introduction

For over two decades, the performance of commodity microprocessor-based supercomputing systems has
been reliant on clock frequency improvements from the scaling of microchip features due to Moore’s
Law. However, since the introduction of 90nm chip technology, heat density and changes in the
dominant physical properties of silicon have moderated the pace of clock frequency improvements. As
a result, the industry is increasingly reliant on unprecedented degrees of parallelism to keep pace with
the ever-growing demand of high-end computing (HEC) capabilities. Thus, in the imminent era of
petaflop systems, computational platforms are expected to be comprised of tens or even hundreds of
thousands of processors.

In today’s supercomputing landscape, fully-connected networks, such as crossbar and fat-tree config-
urations, dominate HEC interconnect designs [20]. Unfortunately, the component cost of these network
topologies scale superlinearly with the number of nodes in the system — making these designs imprac-
tical (if not impossible) at the ultra-scale level. Consequently, HEC system architects are increasingly
considering lower degree topological networks, such as 2D and 3D tori, that scale linearly in cost relative
to system scale. However, adoption of networks with a lower topological degree of connectivity requires
renewed attention to application process placement, as a topology-oblivious process mappings may

1

result in significant performance degradation. This kind of topological mismatch may be mitigated by
sophisticated task migration and job-packing by the batch system, but such migration impacts overall
system efficiency and is often too complex to implement on modern parallel systems. Additionally, a
growing fraction of applications exhibit dynamically adapting computational structures, due in part to
the wider adoptance of multi-scale simulation methodologies. These algorithms are characterized by
evolving communication requirements, which change dynamically at runtime. Statically mapping this
class of codes onto a lower degree interconnect topology may result in hopelessly inefficient performance
at large scale.

In response to these growing concerns, we propose HFAST, a Hybrid Flexibly Adaptable Switch
Topology (HFAST) [19] that employs optical circuit switches (Layer-1) to dynamically provision packet
switch blocks (Layer-2) at runtime. This work makes several important contributions. First, we
examine the topological communication characteristics of state-of-the-art scientific computations across
a broad range of domains, including a comprehensive exploration of an adaptive mesh refinement
(AMR) calculation. Our analysis represents the most detailed study of the evolving communication
requirements for a dynamic AMR simulation to date. Next, we present a optimization methodology for
mapping application processes onto the HFAST architecture, which minimizes the number of message
hops across the interconnect. Quantitative results on realistic, large-scale applications demonstrate
that, even for modest levels of concurrency, the HFAST approach can be used to design an interconnect
network as effective as a fat-tree, with fewer switching resource requirements. Overall results point
to the promising potential of utilizing hybrid reconfigurable networks to interconnect future petascale
architectures, for both static and dynamically adapting applications.

2 Hybrid Switch Architecture

As the HEC community moves towards petascale architectures comprised of tens or hundreds of thou-
sands of processors, the industry will be hard-pressed to continue building cost-effective fully connected
networks. For an alternative to fat-trees and traditional packet-switched interconnect architectures,
we can look to recent trends in the high-speed wide area networking community, which has found that
lambda-switching — hybrid interconnects composed of circuit switches together with packet switches
— presents a cost-effective solution to a similar set of problems.

2.1 Circuit Switch Technology

Packet switches, such as Ethernet, Infiniband, and Myrinet, are the most commonly used interconnect
solution for large-scale parallel computing platforms; unfortunately, these network technologies all have
relatively high cost per-port. A packet switch must read the header of each incoming packet in order to
determine on which port to send the outgoing message. As bit rates increase, it becomes increasingly
difficult and expensive to make switching decisions at line rate. Recently, fiber optic links have become
increasingly popular for cluster interconnects because they can achieve higher data rates and lower bit-
error rates over long cables than low-voltage differential signaling over copper wire. However, optical
links require a transceiver that converts from optical to electrical signals so the silicon circuits can
perform their switching decisions. These Optical Electrical Optical (OEO) conversions further add

2

to the cost, latency, and power consumption of switches. Fully-optical packet switches (i.e. that do
not require an OEO conversion) can eliminate the costly transceivers, but per-port costs will likely be
higher than an OEO switch due to the need to use exotic optical materials in the implementation such
as the recent OSMOSIS project, which was a DARPA funded collaboration between IBM and Corning
to develop a fully optical packet switch [1].

Circuit switches, in contrast, create hard circuits between endpoints in response to an external
control plane — just like an old telephone system operator’s patch panel — obviating the need to make
switching decisions at line speed. They also eliminate the need for OEO conversion through optical
transceivers, which are costly and consume considerable power. As such, they have considerably lower
complexity and consequently lower cost per port. For optical interconnects, micro-electro-mechanical
mirror (MEMS) based optical circuit switches offer considerable power and cost savings as they do not
require expensive (and power-hungry) OEO transceivers required by the active packet switches. Also,
because non-regenerative circuit switches create hard-circuits instead of dynamically routed virtual
circuits, they contribute almost no latency to the switching path aside from propagation delay. MEMS
based optical switches, such as those produced by Lucent, Calient and Glimmerglass, are common in
the telecommunications industry and their prices are dropping rapidly as the market for the technol-
ogy grows larger and more competitive. Our work examines leveraging MEMS-based circuit-switch
technology, in the context of ultra-scale parallel computing platforms.

Circuit switches have long been recognized as a cost-effective alternative to packet switches, but it
has proven difficult to exploit these technology in cluster interconnects because the hard-wired circuit
switches are oblivious to message/packet boundaries. Although it is possible to reconfigure the optical
path through the circuit switch, the overhead is on the order of milliseconds and one must be certain
that no message traffic is propagating through the light path when the reconfiguration occurs. The
overhead of ensuring the interconnect has achieved a quiescent state undercuts the advantages of a pure
circuit switched approach. In comparison, a packet-switched network can trivially multiplex and demul-
tiplex messages destined for multiple hosts without requiring any configuration changes. Our HFAST
approach overcomes the limitations of pure circuit switched approaches by applying packet switching
resources judiciously to maintain the cost advantages of circuit switching. Detailed discussions of these
technologies implementations and their tradeoffs can be found in [3, 9, 19].

Our proposed hybrid interconnect architecture has the most similarity to the Interconnection
Cached Network (ICN) [9] approach. However, whereas the ICN would require task migration to
preserve optimal graph embedding, the HFAST approach allows tasks to remain in-situ as the inter-
connect adapts to the evolving job requirements. This feature is particularly advantageous for the
adaptive applications that are the focus of this paper.

2.2 HFAST: Hybrid Flexibly Assignable Switch Topology

To address the limitations of pure packet- or circuit-based switches, we propose the HFAST interconnect
architecture, composed of a hybrid mix of (Layer-1) passive/circuit switches that dynamically provision
(Layer-2) active/packet switch blocks at runtime. This arrangement leverages the less expensive circuit
switches to connect processing elements together into optimal communication topologies using far
fewer packet switches than would be required for an equivalent fat-tree network composed of packet

3

1

2

3

D

1

2

3

D

1

2

3

4

5

6

7

8

9

N

Circuit Switch
Crosssbar

SB1

SBM

Active/Packet Switch Blocks Nodes

MEMS Optical Switch 1

2

3

4

5

6

SB1

SB2

1

2

3

4

1

2

3

4

Active/Packet
Switch Blocks

Nodes

MEMS Optical Switch

Circuit
Switch

Crosssbar

Figure 1: General layout of HFAST (left) and example configuration for 6 nodes and active switch blocks of size
4 (right). In this example, node 1 can communicate with node 2 by sending a message through the circuit switch
(red) in switch block 1 (SB1), and back again through the circuit switch (green) to node 2.

switches. Figure 1 shows how the fully-connected passive circuit switches are placed between the nodes
and the active (packet) switches. The communication topology is thus determined by provisioning
of circuits between nodes and active switches, and between blocks of active switches. This allows
active packet switch blocks to be used as a flexibly assignable pool of resources that support adaptable
formation of communication topologies without any job placement requirements. Using less-expensive
circuit switches, the packet switch blocks could emulate many different interconnect topologies such
as a 3D torus or densely-packed 3D mesh. Codes that exhibit non-uniform degree of communication
can be supported by assigning additional packet switching resources to the processes with greater
communication demands. Additionally, topology can be incrementally adjusted at runtime to match
the requirements of codes with dynamically adapting communication patterns.

In the HFAST context, the circuit switch technology is most effective when a dedicated circuit is
used primarily for the bandwidth bound messages. Our recent measurements on a number of different
existing interconnect architectures saw minimal improvements in performance of applications that were
dominated by the smaller latency bound messages [19] (in spite of the theoretical ability of RDMA
to combine and pipeline small messages). Therefore, we focus on messages that are larger than the
bandwidth-delay product, defined as the minimum message size that can theoretically saturate the link
— conservatively set to 4KB. Our analysis filters out the latency-bound messages with the assump-
tion that they can be carried either as transit traffic that requires several hops through the HFAST
interconnect topology to reach its destination, or routed to a secondary low-latency low-bandwidth
interconnect that uses much lower cost components for handling collective communications with small
payloads. An example of such a low-latency secondary network can be found in the BlueGene/L Tree
network [7], which is designed to handle fast synchronization and collectives where the message payload
is typically very small.

3 Non-Adaptive Scientific Applications

To evaluate the potential effectiveness of HFAST, we must first develop an understanding of the com-
munication requirements of scientific codes across a broad spectrum of parallel algorithms. Here we
examine the behavior of six codes based on non-adaptive numerical methods, whose communication
patterns remain mostly static throughout the course of the computation: Cactus, LBMHD, GTC,

4

Name Lines Discipline Problem and Method Structure
Cactus [6] 84,000 Astrophysics Einstein’s Theory of GR via Finite Differencing Grid

LBMHD [14] 1,500 Plasma Physics Magneto-Hydrodynamics via Lattice Boltzmann Lattice/Grid
GTC [13] 5,000 Magnetic Fusion Vlasov-Poisson Equation via Particle in Cell Particle/Grid

MADbench [5] 5,000 Cosmology CMB Analysis via Newton-Raphson Dense Matrix
ELBM3D [12] 3,000 Fluid Dynamics Fluid Dynamics vi Lattice Bolzmann Lattice/Grid

BeamBeam3D [17] 23,000 Particle Physics Poisson’s equation via Particle in Cell and FFT Particle/Grid

Table 1: Overview of static scientific applications examined in this work.

MADbench, ELB3D, and BeamBeam3D. These codes represent candidate ultra-scale applications that
have the potential to fully utilize leadership-class computing systems. A brief overview is presented in
Table 1; detailed descriptions of the algorithms and scientific impact of these codes can be found in
[5, 6, 12–14,17].

Figure 2 shows the communication topologies for the static applications in this study. The graphs
provide the volume and pattern of message exchanges between all tasks as recorded by the IPM [11]
profiling layer. The X and Y axes each represent the discrete range of 1 to P . If communication
occurs between two given processors x and y, a point (x, y) is plotted on the plane; a darker color
intensity represents larger data volume exchange between the two processors. Because we assume that
switch links are bi-directional, the values at (x, y) and (y, x) are always identical. The percentage of
communicating partners for each static application is quantified in Table 2, which shows the relative
sparseness of almost all the static topology graphs: four of the six codes communicate with less then 5%
of the processors involved in the computation. These codes thus reflect the large class of applications
that vastly underutilize a fully connected network.

Figure 2: Communication topology of the static applications in our study (from left to right): BeamBeam3D
(p=1024), Cactus (p=1024), GTC3 (p=256), ELBM3D (p=1024), LBMHD (p=256), and MADbench (p=256).

% Communicating AverageName P
Partners Messages/P

Cactus 1024 0.5% 12,018
LBMHD 256 4.6% 23,907

GTC 256 1.6% 5,595
MADbench 256 15.3% 14,122
ELBM3D 1024 0.6% 12,024

BeamBeam3D 1024 25.2% 8,952,000

Table 2: Communication intensity of static scientific applications examined in this work, showing percent of
communicating partners and the average (per processor) number of exchanged messages

.

5

4 Adaptive Mesh Refinement Calculation

In order to understand the potential of utilizing our hybrid reconfigurable interconnect in the context
of dynamically adapting applications, we explore the communication details of an adaptive mesh refine-
ment (AMR) calculation. Although the AMR methodology has been actively researched for over two
decades [2] our work represents the first study to quantify the evolving communication requirements
of this complex application.

AMR is a powerful technique that reduces the computational and memory resources required to
solve otherwise intractable problems in computational science. The AMR strategy is to start with a
problem on a relatively coarse grid and dynamically refine it in regions of scientific interest or where the
coarse grid error is too high for proper numerical resolution. Not surprisingly, the software infrastruc-
ture necessary to dynamically manage the hierarchical grid framework tends to make AMR codes far
more complicated than their uniform grid counterparts. Despite this complexity, it is generally believed
that future multi-scale applications will increasingly rely on adaptive methods to study problems at
unprecedented scale and resolution.

A key component of an AMR calculation is dynamic mesh regridding, which dynamically changes
the grid hierarchy to accurately capture the physical phenonema of interest. Cells requiring enhanced
resolution are identified and tagged using a specified error indicator, and then grouped into rectangular
patches that sometimes contain a few cells that were not tagged for refinement. These rectangular
patches are then subdivided to form the grids at the next level. This process is repeated until either
the error tolerance criteria is satisfied or a specified maximum level of refinement is reached.

4.1 HyperCLaw Overview

Figure 3: Deformation of Helium bubble as it passes through shock front in the AMR simulation.

Our work examines HyperCLaw, a hybrid C++/Fortran AMR code developed and maintained
by CCSE at LBNL [8, 18] where it is frequently used to solve systems of hyperbolic conservation laws
using a higher-order Godunov method. In HyperCLaw most of the communication overhead occurs
in the FillPatch operation, which requires complicated and irregular communication patterns. Fill-
Patch presents a very complicated nonuniform, but sparse communication pattern. Once it completes,
a higher-order Godunov solver is applied to each resulting grid. This solver is compute-intensive,
requiring upwards of a full second for the problems we ran in this study, during which time no inter-

6

processor communication occurs. HFAST circuit-switch reconfiguration could therefore occur during
this compute-only phase, to dynamically incorporate the evolving communication requirements of the
AMR calculation.

4.2 Evolution of Communication Topology

The HyperCLaw problem examined in this work profiles a hyperbolic shock-tube calculation, where
we model the interaction of a Mach 1.25 shock in air hitting a spherical bubble of helium. This case is
analogous to one of the experiments described by Haas and Sturtevant [10]. The difference between the
density of the helium and the surrounding air causes the shock to accelerate into and then dramatically
deform the bubble. An example of the kind of calculation HyperCLaw performs is seen in Figure 3,
along with an overlaid representation of the grids used.

For this paper, we examine a refinement of three levels (0, 1, 2), with 0 being the lowest (or base)
level and 2 being the highest (or finest) level, where most of the computation time is spent. Three
levels of refinement are typical for calculations of this kind. Note that the refinement is a factor of two
in each of the three coordinate directions.

processor

pr
oc

es
so

r

200

400

600

200 400 600

level 1

200 400 600

level 2

Figure 4: Topology of message exchange for HyperCLaw AMR levels 1 and 2.

In Figure 4, we see the topology of message exchanges for communication at levels 1 and 2. Note
that these two levels exhibit very different communication patterns. Because level 1 represents a coarser
problem than that of level 2, there are far fewer grid cells (communicating processors) at level 1 than
at level 2. At level 2, the increase in the number of 3D grid cells causes each processor to exchange
messages with many more cells. This results in a much denser communication topology since each 3D
grid cell communicates with up to six others.

The structure of the AMR calculation provides an opportunity for HFAST to adapt its configuration
to the evolving topology. The entire calculation is divided into timesteps, each containing distinct
communication and computation phases separated by a regridding operation that takes on the order of
hundreds of milliseconds. During this period, the optical switches can be reconfigured to take advantage

7

of changes in the most significant communicating partners.
In order to justify the use of a lower degree interconnect topology, and thus to benefit from the

HFAST approach, the proportion of communicating partners (for messages over the bandwidth-delay
product) of HyperCLaw must be significantly less than the number of nodes, P . Recall that the HFAST
approach utilizes circuit switch technology for only bandwidth-bound messages, while latency-bound
communications are routed to a secondary, low-bandwidth interconnect. We thus remove all messages
whose sizes are less than 4KB from our analysis, as these message sizes are small enough that the
messages are not bandwidth-bound on most modern interconnect technologies.

Another condition necessary to make HFAST a viable option for this dynamic calculation, is the
requirement that the set of communicating partners not change unpredictably and sharply at each time
step. Otherwise, it would be impossible to appropriately reconfigure the optical switches a priori for a
given time step.

Figure 5(a) shows the fraction of communicating partners — represented as the percentage of the
possible partners each processor communicates with — for given AMR timesteps of our HyperCLaw
simulation (run at P = 768). We also present Figure 5(b) which shows the percentage of communicating
partners that did not change, using both the naive approach based on the previous timestep and a
simple heuristic strategy based on the previous timestep at the same AMR grid level. Observe that
the heuristic approach significantly improves the percentage of communicating partners that do not
change across remapping phases. This optimization will be further explored in the processor alocation
algorithm of Section 5.

time step

%
 o

f f
ul

l m
es

h

1

2

3

0 10 20 30 40 50

(a)
time step

%
 o

f c
om

m
. p

ar
tn

er
s

st
ay

in
g

th
e

sa
m

e

0

20

40

60

80

100

0 10 20 30 40 50

naive

0 10 20 30 40 50

heuristic

(b)
Figure 5: HyperCLaw communication for refinement levels 1 and 2, showing (a) the percentage of communicating
partners for messages greater than 4KB, and (b) the percent of these communicating partners that stay the same
between AMR timesteps. The dashed line indicates the average value.

Based on Figure 5(a) we observe that no timestep exhibits a communication pattern that requires
more than 4% of the available pathways through a fully connected network. While such a pattern is
clearly not isomorphic to a mesh or torus topology, it is well matched to bisection bandwidth offered
by a lower-degree interconnect, provided the interconnect topology can be adapted to application’s
communication pattern. We thus argue that the adaptation offered by HFAST enables a lower degree
network to conform to the applications complex communication topology, whereas a lower-degree in-
terconnect with a fixed topology, such as a torus or mesh, would not be well suited to the complex

8

topology. But this observation holds for a snapshot of the communication topology requirements in
time. The true situation is far more complex as this topology evolves over time in a data-dependent
fashion as the simulation progresses.

In order to understand the time-evolution of the communication topology, we focus on the incremen-
tal changes in the set of communicating partners as the simulation progresses. In order to understand
this analysis, it is necessary to know that the pattern of AMR grid levels is a level 0 timestep, within
which are two level 1 timesteps, within which are two level 2 timesteps. We exclude data from the level
0 timesteps. As a result, our analysis of Figure 5(b) shows a six-timestep pattern: [0], 1, 2, 2, 1, 2, 2.
Careful reading of the data shows that the changes in communicating partners also follows a six-step
pattern, which is most evident in the patterns of taller bars (high-percent of the same partners). A
slight variation occurs at steps 25-27 that is due to the boundary between a checkpoint/restart of the
code at that point. Overall, the heuristic of using the same AMR level for the previous time step is
an improvement to the consistency of communicating partners, and the data strongly suggests that an
algorithm that takes advantage of the six-step pattern could do even better. Detailed verification of
this conjecture will be the subject of future work. From these detailed results we conclude that it is
feasible to accurately predict how to remap the underlying optical switches based on a snapshot of the
current communication topology.

It is important to note that there are a wide variety of AMR algorithms and implementations, and
our observations do not necessarily apply to all AMR simulations. However, this analysis does show
the applicability of the HFAST approach to similar AMR calculations as well as dynamic applications
in general.

5 Optimization of the Interconnect Topology

Based on our analysis of communication characteristics for both static and dynamic applications, we
now describe an optimization strategy for mapping these characteristics onto the HFAST architecture.
First, we define the algorithm for choosing an interconnection topology (also known as ”processor
allocation”) that minimizes the number of hops per message. Next we show that for our specific
applications, the required bandwidth is much smaller than the full bandwidth available in a traditional
fat-tree configuration, especially for large numbers of processors.

5.1 Processor Allocation Algorithm

The effect of processor allocation has been well-observed in the literature and has attracted renewed
attention due to increasing numbers of processors in state of the art supercomputers [4]. Processor
allocation aims at relocating frequently communicating processes such that they are closer to each
other in the communication topology. This has two primary effects: smaller latency and reduced
congestion (due to messages consuming bandwidth on fewer links). Obtaining a provably optimal
processor allocation is very hard: NP-Complete [16] for the general case. Here, we restrict ourselves
to a special case using constraints from the HFAST architecture, and apply a heuristic based on graph
partitioning.

Given a graph G = (V,E), a partitioner decomposes the vertex set V into two or more partitions

9

such that there is a non-overlapping subset of the vertices among partitions. We say an edge is cut if
it connects two vertices from different partitions, and a vertex is a boundary vertex if it is connected
to a cut edge. In our model, each processor is represented by a vertex of the graph, and two vertices
are connected if the associated processors communicate. The goal of our algorithm is to minimize the
number of edges that connect vertices from different partitions, while preserving the property that
equal numbers of vertices are in each partition.

We further constrain our algorithm to reflect the HFAST networking model, that is, a set of
commodity (layer-2) packet and optical switches. The important detail here is that most commodity
packet switches have few ports (small radix), and we examine commonly used configurations of 4-, 8-,
and 16-port switches. Since we arrange these packet-switches in a tree, for the 4-port case the root of
the tree can have four branches, and all other intermediate nodes can have at most two branches. This
constrains the number of cuts for each partitioning: The initial partitioning can perform three cuts,
and then each resulting partition undergoes recursive bisection (one cut).

It is important to understand how the results of this algorithm relate to the HFAST architecture,
as opposed to classic approaches to processor allocation. Based on the partitions output by the al-
gorithm, the HFAST approach uses optical switches to provision switch blocks so that the number of
hops between any two nodes (processors) is the same as the number of cut edges between those two
processors. This is, in the abstract, the same as the approach of mapping the partitions onto a fat-tree
by moving the processes to the appropriate location. However, the HFAST architecture aims to obtain
a similar performance without moving any processes, and without requiring a fully connected network.

To derive the HFAST processor allocation, we implement the partioning algorithm using the MeTis
graph partitioning package [15]. We then apply our optimization scheme to detailed IPM communica-
tion profiles from runs of both the static and dynamic applications described in Sections 3 and 4. Since
this algorithm minimizes the number of hops (Nhops) messages need to travel across the interconnect
fabric, we use this as the metric for comparing the average predicted Nhops using HFAST and the
measured Nhops on a fat-tree (without processor allocation).

5.2 Static Application Results

Based on the outlined optimization scheme, we now compare the potential benefits of HFAST compared
with the traditional fat-tree approach. Figure 6(a) shows the savings in the number of required port
switches when using the HFAST methodology for our studied static applications. This gives some
indication of the possible cost savings, since there is a fixed cost associated with every switch element.
Results show that, on average, the number of switches could be reduced by over 50% compared with
fully-balanced fat-trees, even for these relatively small concurrency experiments (in the context of ultra-
scale systems). We also explore three possible switch configurations — using 4, 8, and 16 ports — to
reflect different interconnect building block options. Intuition may indicate that as the number of ports
per switch increase, the benefit of HFAST diminishes. However, Figure 6(a) empirically demonstrates
that this is not the case: for five of our six studied applications, the benefit of HFAST actually increases
when the number of ports increases from 4 to 16. This is an encouraging sign for utilizing HFAST
in the context of future switch technologies, which will undoubtedly have larger numbers of ports per
switch block.

10

Figure 6(b) shows the benefit of processor allocation with respect to reducing average Nhops, com-
pared with the fat-tree approach (using an 8-port switch configuration). This metric reflects the latency
overhead of messaging, as each additional hop increases the communication latency component. Ob-
serve that the HFAST approach reduces the Nhops by almost 25% on average, and by over 72% for the
8192-way GTC experiment — while requiring significantly fewer hardware components than fat-tree
implementations. Note that varying numbers of processors (shown below each application) were used
for each of the static applications, based on the largest obtainable IPM data sets. It is important to
highlight that the experiments conducted to date utilize relatively small numbers of processors com-
pared with the hundreds of thousands (or even millions) that will comprise future peta-scale systems.
We expect the HFAST advantage to be even more significant on these ultra-scale systems, as the in-
creasing diameter of their networks will dramatically increase the gap between naive (random) and
optimized processor allocation.

HFAST: Reduction in Switch Ports vs. Fattree

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GTC
 8192

LBMHD
 4096

BB3D
1024

CACTUS
 1024

ELB3D
 1024

MADBENCH
 256

AVERAGE

P
e
rc

e
n

t
R

e
d

u
ct

io
n

4 port switches

8 port switches

16 port switches

(a)

HFAST: Reduction in Message Hops vs. Fattree

72%

0%

5%

10%

15%

20%

25%

30%

GTC
 8192

LBMHD
 4096

BB3D
1024

CACTUS
 1024

ELB3D
 1024

MADBENCH
 256

AVERAGE

P
e
rc

e
n

t
R

e
d

u
ct

io
n

(b)
Figure 6: Static application comparison of HFAST processor allocation algorithm to fully-connected fat-tree
approach showing (a) percentage decrease in number of required switch ports for 4, 8, and 16 port switch
configurations and (b) percentage decrease in number of hops (Nhops) for an 8 port switch configuration. The
concurrency level is shown below each application name.

5.3 Dynamic Application Results

We now examine HFAST performance in the context of the dynamically adapting communication
requirements of the HyperCLaw AMR code. In these experiments, we examine both 384-way and 768-
way concurrencies, mapped as 3× 128 and 3× 256 processors onto a fat-tree, respectively. The results
presented in Figure 7 shows how the HFAST approach reduces the average Nhops when compared to
a traditional fat-tree interconnect. Because the AMR code consists of numerous remapping phases,
the savings of Nhops is shown as the aggregate total across the multiple time iterations. Two mapping
strategies are studied for each concurrency. The first represents a theoretically ideal approach where the
updated communication pattern could be predicted before the actual remapping phase. The second
heuristic strategy takes into account that an actual application execution would need to choose an
interconnection topology mapping based solely on information from previous timesteps. Our simple
heuristic permutes the processors for HFAST timestep T using measurements from step T − k, where

11

the offset k is chosen to obtain the most recent timestep at the same AMR grid level — thus avoiding
the sharp changes between grid levels seen in Figure 5(b).

HyperCLaw: Cumulative Nhops Reduction vs Fattree

0

20

40

60

80

100

120

0 10 20 30 40 50

AMR step

C
u

m
u

la
ti

v
e
 N

h
o

p
s

re
d

u
ct

io
n heuristic, P=384

ideal, P=384
heuristic, P=768
ideal, P=768

Figure 7: Dynamic AMR application comparison of HFAST processor allocation algorithm to fully-connected fat-
tree approach showing cumulative reduction of Nhops, using theoretically ideal and heuristic remapping schemes
on 384 and 768 processors (with an 8-port switch configuration).

Several interesting observations can be made from the HyperCLaw performance data of Figure 7.
First, by utilizing an interconnect that can dynamically adapt to an underlying application’s evolving
communication requirements, the aggregate Nhops can be reduced substantially as the calculation
progresses through multiple timesteps and data remapping phases — thereby reducing communication
overhead. Next, our simple heuristic mapping scheme attains reasonable performance relative to the
theoretical ideal (41% and 53% of the ideal case for P=384 and P=768 respectively). Finally, as
expected, it can be seen that the higher concurrency experiment (P=768) achieves more significant
savings in aggregate Nhops compared with the smaller (P=384) test case. These performance gains will
continue improving with processor count, especially for the ultra-scale systems targeted by HFAST,
where concurrencies are expected to be two or more orders of magnitude greater than our existing
experimental platform.

6 Summary and Conclusions

There is a crisis looming in parallel computing driven by rapidly increasing concurrency and the non-
linear scaling of switch costs. It is therefore imperative to investigate interconnect alternatives, to
ensure that future HPC systems can cost-effectively support the communication requirements of ultra-
scale applications across a broad range of scientific disciplines. To address these challenges, we propose
HFAST, a hybrid switch architecture that uses circuit switches to dynamically reconfigure lower-degree
interconnects based on the topological requirements of the underlying scientific application.

This work extends our previous HFAST proposal in several important directions. First, we presented
an optimization methodology for efficiently mapping application communication requirements onto a
processor topology. We then utilized the communication characteristics of six large-scale scientific
applications to explore the possible benefits of the HFAST methodology. Results show that, on average,
the HFAST approach can save more than 50% of the required switch component hardware compared

12

with a traditional fat-tree approach. Furthermore, HFAST reduces the number of required message
hops by an average of 25% — thus demonstrating a potentially significant savings in both infrastructure
cost and communication latency overhead.

Next, we conducted an extensive communication-requirement analyis of an adaptive mesh refine-
ment simulation, to study the potential of utilizing our reconfigurable interconnect solution in the con-
text of dynamically adapting multi-scale computations. Results show that by employing our heuristic
remapping algorithm, the HFAST approach allows for significant savings in communication overhead,
while using fewer network components. Moreover, we expect these savings to grow considerably for
future petascale architectures, which will undoubtedly require unprecedented levels of concurrencies.

It is important to highlight that the topological permutations discussed in our study are equally
applicable to low-degree fixed-topology networks or even IBM’s hybrid OCS interconnects [9]. However
— unlike HFAST which can dynamically reconfigure the underlying circuit switches — these approaches
would require a considerable amount of task migration overhead in order to maintain an optimal
embedding of the evolving communication topology.

We also note that the heuristic remapping algorithm introduced in this paper could be applicable to
optimizing process placement on systems employing a thin-tree topology, such as the Tokyo Institute
of Technology’s TSUBAME supercomputing system [21]. In a thin-tree, the upper-tiers of the fat-tree
topology have fewer links than are necessary to achieve full-bisection bandwidth. This topology can
exploit the sparseness of communication patterns that we observed in Section 3, but only by sorting
the process mapping to processes. However, we suspect that the high cost of process migration would
isolate the benefits of this approach to static applications. Further examination of the application of
our mapping algorithm to thin-trees will be the subject of future work.

In summary, our preliminary findings indicate that an adaptive interconnection architecture such
as HFAST offers a compelling combination of flexibility and cost-scaling for next-generation ultra-scale
systems. HFAST offers the opportunity for topological permutations without the considerable overhead
that would be required for task migration. Future work will expand the scope our application suite
and refine our topology optimization schemes, while examining the particular technological components
that would bring the HFAST network into existence.

References

[1] F. Abel, C. Minkenberg, R. Luijten, M. Gusat, I. Iliadis, R. Hemenway, R. Grzybowskiand C. Minkenberg,
and R. Luijten. Optical-packet-switched interconnect for supercomputer applications. OSA J. Opt. Network,
3(12):900–913, Dec 2004.

[2] Adaptive Mesh Refinement for structured grids. http://flash.uchicago.edu/∼tomek/AMR/index.html.

[3] Kevin J. Barker, Alan Benner, Ray Hoare, Adolfy Hoisie, Alex K. Jones, Darren J. Kerbyson, Dan Li,
Rami Melhem, Ram Rajamony, Eugen Schenfeld, Shuyi Shao, Craig Stunkel, and Peter A. Walker. On
the feasibility of optical circuit switching for high performance computing systems. In Proc. SC2005: High
performance computing, networking, and storage conference, 2005.

[4] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J.C. Sexton, and R. Walkup. Optimizing task layout on
the blue gene/l supercomputer. IBM Journal on Research and Development, 49, March/May 2005.

13

[5] Julian Borrill, Jonathan Carter, Leonid Oliker, David Skinner, and R. Biswas. Integrated performance mon-
itoring of a cosmology application on leading hec platforms. In Proceedings of the International Conference
on Parallel Processing (ICPP), to appear, 2005.

[6] Cactus Homepage. http://www.cactuscode.org, 2004.

[7] K. Davis, A. Hoisie, G. Johnson, D. Kerbyson, M. Lang, S. Pakin, and F.Petrini. A performance and scala-
bility analysis of the BlueGene/L architecture. In Proc. SC2004: High performance computing, networking,
and storage conference, Pittsburgh, PA, Nov6-12, 2004.

[8] Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory. http://

seesar.lbl.gov/CCSE.

[9] Vipul Gupta and Eugen Schenfeld. Performance analysis of a synchronous, circuit-switched interconnection
cached network. In ICS ’94: Proceedings of the 8th international conference on Supercomputing, pages
246–255, New York, NY, USA, 1994. ACM Press.

[10] J.-F. Haas and B. Sturtevant. Interaction of weak shock waves with cylindrical and spherical gas inhomo-
geneities. Journal of Fluid Mechanics, 181:41–76, 1987.

[11] IPM Homepage. http://www.nersc.gov/projects/ipm, 2005.

[12] J. Shalf J. Carter, L. Oliker. Performance evaluation of scientific applications on modern parallel vector
systems. In VECPAR: 7th International Meeting on High Performance Computing for Computational
Science, Rio de Janeiro, Brazil, July 10-13, 2006.

[13] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling of turbulent transport in magnetically confined
plasmas. Phys. Rev. Lett., 88, 2002.

[14] A. Macnab, G. Vahala, P. Pavlo, , L. Vahala, and M. Soe. Lattice boltzmann model for dissipative in-
compressible MHD. In Proc. 28th EPS Conference on Controlled Fusion and Plasma Physics, volume 25A,
2001.

[15] Metis Homepage. http://glaros.dtc.umn.edu/gkhome/views/metis.

[16] Burkhard Monien. The complexity of embedding graphs into binary trees. In L. Budach, editor, Funda-
mentals of Computation Theory. Proceedings,, pages 300–309, 1985.

[17] J. Qiang, M. Furman, and R. Ryne. A parallel particle-in-cell model for beam-beam interactions in high
energy ring collide rs. J. Comp. Phys., 198, 2004.

[18] C. A. Rendleman, V. E. Beckner, M. L., W. Y. Crutchfield, and John B. Bell. Parallelization of structured,
hierarchical adaptive mesh refinement algorithms. Computing and Visualization in Science, 3(3):147–157,
2000.

[19] J. Shalf, S. Kamil, L. Oliker, and D. Skinner. Analyzing ultra-scale application communication requirements
for a reconfigurable hybrid interconnect. In Proc. SC2005: High performance computing, networking, and
storage conference, 2005.

[20] Top 500 supercomputer sites. http://www.top500.org, 2005.

[21] TSUBAME Grid Cluster. http://www.gsic.titech.ac.jp, 2006.

14

